Ballooning Instability of a Divertor Tokamak ¹

Ping Zhu
in collaborations with
C. R. Sovinec, C. C. Hegna, and E. C. Howell

University of Wisconsin-Madison

CEMM Meeting Seattle, WA April 18, 2010

To understand the roles of divertor in ELM dynamics

- The X-point of a divertor tokamak was believed to introduce new regimes of edge instabilities (RX mode) [1].
- During the late nonlinear stage of ELMs, field line stochasticity induced by the divertor configuration may play significant roles in ELM dynamics [2].
- In general, it is not clear if the presence of divertor separatrix is a prerequisite for the onset of ELMs.
- Recent NIMROD simulations have observed an edge ballooning instability with distinctively different mode structures and active regimes in a divertor tokamak.
- [1] J. R. Myra and D. A. D'Ippolito, *Phys. Plasmas* 12, 092511 (2005).
- [2] L. Sugiyama and H. Strauss, ELMs: A new type of plasma instability, CEMM Workshops, 2009; L. Sugiyama, APS-DPP talk, 2009.

NIMEQ generates tokamak equilibria with a single null divertor for this study

- NIMEQ is a direct Grad-Shafranov equilibrium solver developed within NIMROD framework [Howell and Sovinec 2008].
- NIMEQ has been applied to construct toroidal equilibria with a wide range of complexities.
- A circular-shaped tokamak equilibrium with a single null divertor is generated using NIMEQ:
 - ▶ Pressure $P(\Psi)$ and current $F(\Psi)$ profiles are prescribed for both closed and open flux regions.
 - ▶ Boundary B · n is prescribed to model effects of external coils.
 - Double null divertor equilibrium can be similarly obtained.

Core plasma is defined by the pressure and current profiles inside edge pedestal foot

Edge plasma outside pedestal features a single null separatrix

In a limiter tokamak (no separatrix), ballooning mode structures are localized near outboard midplane with up-down symmetry (n = 15)

Mode structures remain similar in presence of separatrix in dissipative regime ($\theta_x = -82.5, n = 15$)

Mode amplitudes remain peaked in outboard middle plane and up-down symmetry.

Mode structures are very different in presence of separatrix in ideal regime ($\theta_x = -82.5, n = 15$)

Mode structures seem peaked near X-point of separatrix.

Transition of mode structure from limiter-like to divertor-like can be also modulated by resistivity $(\theta_x = -82.5, n = 15)$

Growth rates of resistive and diffusive ballooning approach the ideal X-point mode from opposite ends

Linear mode structures are also regulated by X-point location

Upper row: ideal mode; Lower row: diffusive mode

Linear growth increases as X-point moves to outboard

▶ Ideal regime:

$$D = \mu = \chi = 0,$$

 $D_{\text{hyper}} = 1, \ \eta = 0$

Diffusive regime:

$$D=\mu=\chi=25$$
,

$$D_{\text{hyper}} = 0$$
, $\eta = 0$

Summary

- NIMROD calculations have identified two types of ballooning instabilities of a divertor tokamak in two opposite collisionality regimes.
- In collisional regime, ballooning mode has a similar structure as in a limiter tokamak;
- In ideal regime, ballooning mode structure is localized near X-point instead of outboard midplane.

Future work on ballooning instability physics

- CEMM relevant topics
 - Mostly in context of ELMs
 - 2D shaping (non-circular shape, divertor separatrix/X-point)
 - 3D shaping effects (RMP)
 - ► Edge shear flow effects
 - Peeling-ballooning coupling
 - Nonlinearity
 - Marginal state crossing and detonation regime
 - Late nonlinear regimes: saturation, filament and blob
 - Nonideal effects (resistive,2-fluid, kinetic, hot-particle)
 - Determine edge stability boundary.
- Supporting topics
 - Mostly in context of substorms (NSF, CMSO)
 - Interchange and ballooning instabilities of plasma sheet.
 - Coupling to tearing instability and reconnection process.
- Verification and validation efforts